Stacking Using

A few days ago, Benjamin pointed me to a feature in C#, I was not aware of, yet. You can stack using statements. In the following I will show an example where this might come in very handy.

I recently worked on a project where we had to process large text files (with large I mean 14GB each). In a pre-processing step we cleaned up the files, processed each line, validated it against a set of rules and then either wrote it back to a output file or a temporary which required further processing steps. Due to the complexity of the validation we decided to go with a small C# program that does the job.

A fast and convenient way was utilizing a set of StreamReaders and StreamWriters and applying using statements a to read and write the files. As Anoop pointed out, not using usings is one of a common mistakes .NET developers should avoid. Eventually, the code looked similar to the following example by cascading the using statements.

using (StreamReader reader = new StreamReader(@"c:input.txt"))
{
    using (StreamWriter successWriter = new StreamWriter(@"c:success.txt"))
    {
        using (StreamWriter failWriter = new StreamWriter(@"c:fail.txt"))
        {
            // all the magic happens here
        }
    }
}

That would be the way many developers would write the code, and if you have a look at the MSDN documentation about using statements  this seems to be the way to do it. But the C# 4.0 Language Specification does give you an hint that there is more you could do.

For a using statement stmt of the form:

using ( resource-acquisition ) embedded-statement

The definite assignment state of v at the beginning of resource-acquisition is the same as the state of v at the beginning of stmt.

The definite assignment state of v on the control flow transfer to embedded-statement is the same as the state of v at the end of resource-acquisition.

What’s not obvious here, is the fact that you can stack using statements utilizing one code block. In this case you embedded-statement is another using statement. In fact that’s not different how most of us use cascading for and foreach loops. In fact, this is not a new feature of C# but something you might not have considered before.

using (StreamReader reader = new StreamReader(@"c:input.txt"))
using (StreamWriter successWriter = new StreamWriter(@"c:success.txt"))
using (StreamWriter failWriter = new StreamWriter(@"c:fail.txt"))
{
    // all the magic happens here
}

Writing the code like this reduces a lot of noise and indentation in your code, keeps the resource acquisition tight and might be definitely worth keeping in mind.

Clean Code: o = 0

I do necessarily  agree with all statements in Clean Code by Robert C. Martin. One of the sections I though is completely obsolete was a statement about disinformative names:

“A truly awful example of disinformative names would be the use of lower-case L or uppercase O as variable names, especially in combination. The problem, of course, is that they look almost entirely like the constants one and zero, respectively.”

The corresponding example he gives is the following:

int a = 1;
if (O == 1)
  a = 01;
else
  l = O1;

So far I though it is obvious not to write such code, however, I came across similar code these days.

for (int o = 0; o < args.NewItems.Count; o++)
{
 string s = args.NewItems[o].ToString();
 ...
}

What’s the problem here? The variable name o is used for a counter and initialized with 0. While this is already hard to read, o might indicate that we deal with an object here. So when having just a brief look over this code you might get the impression it iterates through a set of objects. This is further supported by the usage of the NewItems property here, as in .NET object references is quite commonly used to resolve e.g. a key/value pair within collections.

When using a counter variable without meaning one should use common names such as i or j that a commonly recognized as counter variables.

for (int i = 0; i < args.NewItems.Count; i++)
{
 string s = args.NewItems[i].ToString();
 ...
}

This is only a slight modification but already improves the readability of the code.

<pre>

int a = 1;
if (O == 1)
a = 01;
else
l = 01,

</pre>